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INTRODUCTION 

Impact protective headgear should be designed to 
distribute impact, absorb impact energy force, and resist 
penetration or fracture by impact with sharp-edged structures. 
Helmets have been accepted items for head protection in war, 
athletics, recreation, and all hazardous industries., In early 
days, aviation helmets were of t-he same type as motorcyclists' 
helmets, designed primarily to give protection against wind 
blast. Later, as expanded plastic foam energy-absorbing 
liners became available, they were made similar to football 
helmets with the idea of protecting against impact, and more 
recently to protect against wind blast, noise, and impact. 
Most motorcycle helmets are designed for wind blast and impact 
protection with little, if any, attention to noise protection 
for the ears. 

A commercial motorcycle helmet is evaluated in this. 
report'and compared to the US Army Sound Protective Helmet 
No. 4 (SPH-4) aviator helmet, and to experimental helmets of 
the same configuration as the SPH-4. Such evaluations provide 
the necessary,data base for comparison of helmet standards as 
well as awareness of both the good and bad features of crash 
helmet design, regardless of origin of manufacture. The 
importance of increasing the thickness of the plastic foam 
liner is demonstrated. 
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METHOD 

MATERIAL 

The commercial motorcycle helmet shown in Figure 1 was 
evaluated for Impact performance; I.e., the transmission of 
force to an instrumented headform. The visor was cut short 
in order to permit the helmet to fit on the drop tower test 
fixture. The shell was white plastic of 4.2 mm thickness at 
the crown, with a thickness of 3.5 mm in the hatband region. 
The polystyrene energy-absorbing liner had 12 mm thickness, 
and covered the head as illustrated in Figures 3 through 6. 
Although not readily seen in the figures, the liner was 
located about 3 cm above the ear canal at the sides and about 
2 cm below the occipital bone at the rear.* The foam linjjr 
employed in the helmet required a pressure of 60 N per cm 
to actfieve 25 percent compression. The density was .07 
gm/cm . Retention of the helmet was accomplished by the 
chinstrap which was yoke-mounted to the shell. The yoke 
mount is preferable to a single swivel mount because rotation 
either forward or rearward is resisted more directly by the 
yoke. 

---a- 

* Additional coverage of the cranium would be desirable since 
it would allow rotational displacement of the helmet during 
impact without loss of protection. 
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FIGURE 1: Cutaway View of the Motorcycle Test Helmet. 

PROCEDURE 

The impact test device is shown in Figure 2; the tower 
hardware and instrumentation equals or exceeds American 
Standard Association 290.1-1971 Standards. The rigid base 
plate exceeds Z90.1 requirements by an order of magnitude 
since it weighs over 1,800 kilograms (kg). This mass insures 
that the headform acceleration is as accurate as it is 
feasible at high acceleration levels. 

The helmets were placed on a medium-size (3.76 kg) cast 
magnesium headform with one accelerometer'mounted near the 
center of gravity. The standard Z90.1 magnesium headform was 
attached to a lightweight cage and the cage was guided 
vertically on two steel cables. The headform, helmet, and 
cage were, elevated on the vertical cables to a selected drop 
height'for each impact test. The weight of the headform and 
cage was 11.0 pounds (5;O kg) while the weight of the helmet 
was 2.9 lbs (1.3 kg) for a total drop weight of 13.9 lbs (6.3 
kg). 

7 
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FIGURE 2. Helmet/Headform Free-fall Test Device. 

8 

Outer Cable Holes 

Jide Cables 



The uniaxial accelerometer signal was amplified by a 
signal conditioner. Three piezoelectric load washers (Kistler 
type 9021)* were positioned beneath a force plate in lieu of 
the calibration pad shown in Figure 2. The outputs of the 
accelerometer and force plate transducer were displayed on a 
two-channel digital oscilloscope and read also from peak 
voltage meters.* 

The helmeted headform was dropped 13 times from 0.91 to 
2.44 meter (m) heights onto a flat surface. Three additional 
drops were made onto the 2.90.1 standard 4.8 cm radius 
hemispherical surface, to provide comparative data. The test 
sequence, impact locations, and energy of impact (drop height 
and total drop mass) for the two motorcycle helmets are shown 
in Table 1. The drop sequence is shown by test number in the 
table. 

---- 
*e-Appendix A. 





RESULTS AMD I)ISCUSSION 

MOTORCYCLE-TYPE HELMET TESTS 

The two motorcycle-type helmets were subjected to the 16 
impact tests as cited In Table 1. The appearance of helmet 
No. 2 after the impact tests is shown in Figures 3 through 6. 
The centroid of all impact points was at least 6 centimeters 
above the lower edge of the foam liner. 

FIGURE 3. Side View of Impacted Helmet (Visor shortened 
to fit into Impact test fixture). 
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(Shell plus liner) (Liner with outer shell removed) 

FIGURE 4. Front View of Helmet Subsequent to Comple- 
tion of Impact Tests (Integral Shell Visor 
Has Been Cut Off to Permit Drop Tests With- 
out Interference). 
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(Shell plus liner) (Liner with outer shell removed) 

FIGURE 5. Rear View of Helmet and Liner 
Subsequent to Impact Testing 
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(Shell plus liner) (Liner with outer shell removed) 

FIGURE 6. Left Side View of Helmet and Liner Subsequent to 
Impact Testing (Integral shell visor has been cut 
off to permit drop tests without interference) 

The effect of increased drop height and concomitant impact 
energy is shown in the plot of acceleration versus time in 
Figure 7. The difference between a flat surface and a 4.8 cm 
radius surface for equal impact energy (1.47 m drop height) 
also is shown in Figure 7. Note that the acceleration values 
obtained for test Nos. 10, 13, 14, 17, 18, 19, 20, and 21, at 
three different drop heights (0.91, 1.22, and 1.47 m) are 
consistent. This indicates uniform quality of the helmets. 
The significant variation of the traces in the 4.8 cm radius 
drops shown is probably caused by friction between the guide 
cables and the headform guide cage. This type of problem is 
more likely to occur when impacting the spherical surface than 

14 
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when impacting a flat surface due to the lateral movement of 
the headform and guide cage, as the helmet tends to "slip or 
slide" down the side of the spherical surface. 

The effect of increasing the drop height to 2.13 and 2.44 
m is shown in Figure 8. At the 2.13 m drop height, the two 
traces nearly are identical. At the 2.44 m drop height, the 
three traces differ as evidenced from comparison of the 580 
peak G on run 24 F (left rear) and the 350 peak G run 23 E 
(left side). This large difference in peak G response most 
likely is caused by the "bottoming out" or total crushing of 
the foam liner in run 24 F. A difference of only 1 mm in 
crush distance can result in a significant change in peak 
acceleration level.. It is possible that friction prevented 
the peak G in drops 22 1) and 23 E from being greater than 
shown in Figure 8. 

Peak headform deceleration versus drop height is shown in 
Figure 9. The peak decelerations (G) also are compared to the 
derived Wayne State University (WSU) tolerance curve (Haley et 
&., 1966). The derived curve reveals that all experimental 
impacts on these helmets resulted In injurious G values. 

The 1975 Snell Foundation Helmet Specification (Snively, 
1975) calls for the helmet to permit transmission of a peak 
acceleration of 300 G or less when dropped from a height of 3 
meters. From Figure 9 it can be seen that drops 10, 12, 13, 
14, 17, 18, 19, 20, and 21 would have passed the Snell 
specification, while the remainder would not have passed. 

British Standard 2001 (1972) requires that a motorcycle 
helmet not cause a peak headform force greater than 4,400 
pounds (19,580 Newtons) when a 5-kg headform mass is dropped 
from a height of 2.5 meters. From Table 1 it can be seen that 
experimental drops 22, 24, 25, and 26 resulted in a 
transmitted force greater than 19,500 Newtons, and would have 
failed the requirements of the British 2001 Standard. The 
U.S. department of Transportation (DOT) 218 Standard (Office 
of the Federal Register, 1980) requires that helmets dropped 
from 1.8 meters not exceed 400 G peak; drops 22, 24, and 25 
also failed this standard. 

The fact that four of the impacts resulted in such a high 
level of transmitted force (19,580 N or more) and 
accelerations ranging from 382 to 576 G focuses attention on 
the Inadequate liner provided in the helmet. The liner should 
be at least twice the thickness of 12mm used in these two 
helmets in order to lower the transmitted force to tolerable 
levels for impacts in the range of 2 meters drop height. 

. 
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Since it may be expected that motorcyclists may fall or 
be thrown from heights of 1.6 m up to 3.0 m, It is clear that 
riders could receive various degrees of head injury while 
wearing the helmet. These energy values are within the limits 
of 3.0 meters (Snively, 1975) and 1.8 meters (DOT 218) for 
energy; however, both these standards permit transmitted 
acceleration to the head which is far in excess of the values 
recommended by others (Gurdjian, Lissner, and Patrick, 1962, 
Haley et aJ., 1983, Hundley, Haley, and Shanahan, 1981, Nahum, 
Raasch, and Ward, 1981, Slobodnik, 1980, and Ward and Nahum, 
1979). 

EXPERIMENTAL HELMET TESTS 

The experimental helmet shell configurations were 
identical to the standard SPH-4 shell. The SPH-4 helmet is 
described in Figure 10. It was shown (Haley et al., 1966) 
that increased foam thickness would significantly reduce 
transmitted acceleration; therefore, the SPH-4 foam liner was 
increased up to 0.88 inch (2.24 cm) in these tests. Only two 
different shell and liner test constructions are summarized 
for this report in Figure 11. However, a total of 12 
different shell and foam combinations were tested In this 
series. The two experimental shell and foam liner specimens 
summarized in Figure 11 were of identical contour as the 
standard SPH-4 flight helmet. The test sequence consisted of 
five drops from 3 feet (0.91 m) through 6.65 feet (2.03 m) 
onto a flat rigid surface. (The experimental configurations 
did not include a suspension system as shown in Figure 10.) 
The peak G for the experimental helmets was approximately half 
that of the standard SPH-4 helmet (1.3 cm foam) for these 
impacts. 

COMPENDIUM OF US ARMY SPH-4 FLIGHT HELMET TESTING 

For comparative purposes, the transmitted deceleration of 
the standard SPH-4 flight helmet for 1.40 to 1.52 meter drops 
is summarized in Figure 12. Peak deceleration values for the 
crown (apex), sides, front and rear for the SPH-4 are shown in 
Figure 12 along with the standard deviation for each location. 
It should be noted that the SPH-4 contains an energy-absorbing 
web suspension along with a polystyrene foam liner so that one 
would expect the SPH-4 helmet to yield lower peak G-values?, 
especially in the crown region, than do the motorcycle helmets 
shown in Figures 7 through 9. Reference to Figure 7 shows an 
average value of 270 G for a 1.47-meter drop for the 
motorcycle helmet as compared to values of 165 G up to 300 G 
maximum in Figure 12 for a 1.47-meter drop for the SPH-4. 
Also, it should be noted that the wide variation shown in 
Figure 12 probably is caused by the foam thickness variation 
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from 10 mm to 13 mm during the SPH-4's evolution and by the 
variable offset distance.seen with the sling suspension. 

With reference to Figure 11, doubling the thickness of 
the polystyrene foam liner of the SPH-4 can result in headform 
peak G values of only 120 G at a 1.5 meter drop height. This 
would increase the weight by only 0.1 kg because the thicker 
foam is of lower density and the exterior shell may be reduced 
in thickness and still provide adequate load distribution to 
the skull. Such dramatic improvement.clearly points the way 
to improved impact protection for headgear. 

DYNAMICS OF HEAD PKOTECTION 

As stated before, a motorcyclist should be protected from 
a wide range of impact velocities from 3 to 9 meters per 
second; e.g., falls from 2 meters height from moving bikes. 
To provide protection from various impact conditions, the 
protective helmet must be designed to do different things. In 
the case of the high velocity impact, the helmet must convert 
the high velocity energy, with its resultant high pressure 
distributed over a small area, to a pressure pattern which is 
well distributed to the scalp and skull and much lower in 
magnitude. This will require a helmet with a semirigid shell 
or a very thick layer of energy-absorbing material. To 
understand the principles of dynamic head protection, one 
should consider the unprotected head which impacts a flat, 
solid, unyielding surface. The head will be brought to rest 
(zero velocity) in less than 20 milliseconds while the scalp 
and skull deforms. The force of impact will be distributed 
over a rather small area of the skull and the pressure on the 
bone will be rather high. However, if an energy-absorbing 
material is placed between the head and the impacted surface, 
the material will absorb energy as it compresses and 
distribute the subinjurious force over a larger area in 
bringing the head to rest. 

Assuming that brain damage is a function of the maximum 
acceleration applied to the head, the protection achieved by 
an ideal helmet is dependent both on the distance through 
which the material can be compressed before it bottoms out and 
on the peak compressive force. Thus, if head acceleration is 
the significant factor In brain damage, the ideal helmet 
energy-absorbing material would have to be four times thicker 
if the impact velocity were doubled. 

Gurdjian, Lissner, and Patrick (19621, have shown that a 
drop of approximately 1.2 m and an impact velocity of 4.8 
m/set is the maximum condition which the unprotected head can 
tolerate before fracture. With an ideal energy-absorbing 
material of 3.8 cm thick, producing optimum deceleration (5150 
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G peak), it is possible for the helmeted head to drop a 
distance of 2.4 meters to a flat, hard surface, striking it 
with a velocity of 6.9 m/set without suffering concuesion. 
Thus, one concludes that a helmet so configured would improve 
nature's protection by a minimum of 2 to 1. 

In summary, all conceivable impact conditions must be 
considered and provided for and the final helmet design must 
of necessity be a compromise in which the significance of each 
variable has been properly established and taken Into account. 

, 
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CONCLUSIONS 

1. The motorcycle helmets tested would not provide adequate 
force attenuation to prevent concussion and/or more serious 
injury at all energy levels associated with a drop height 
greater than l-meter. 

2. Existing helmet standards permit the production of helmets 
which provide less protection than is practical, and feasible. 

3. Using the US Army's SPH-4 as a referent, the transmitted 
force from helmeted-head impact as measured by headform 
accelerometers can be reduced by 50 percent with only 0.1 kg 
increase in helmet weight. This dramatic force reduction is 
achieved by using a thicker, but lower-density foam liner and 
a larger, but thinner exterior shell. 
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APPENDIX A 

List of Manufacturers 

Kistler Instrument Corporation 
75 John Glenn Drive 
Amherst, NY 14120 

Nlcolet Company 
3902 Casaba Loop 
Valrico, FL 33594 
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